Matplotlib provides several ways to make interactive plots, but it doesn't come with a built-in dropdown menu widget.
However, we can create dropdown menus in Matplotlib using tools like the widgets module, ComboBox from ipywidgets (if using Jupyter notebooks), or by using event listeners with Matplotlib menus.
In this tutorial, we’ll explore different methods to add dropdown menu functionality to Matplotlib plots.
1. Basic Dropdown Menu with mplcursors and Radio Buttons
The RadioButtons widget from matplotlib.widgets can be used to simulate dropdown menus by providing users with a list of options. This is a quick workaround for creating simple selection menus.
import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import RadioButtons # Data setup x = np.linspace(0, 2 * np.pi, 100) y1 = np.sin(x) y2 = np.cos(x) y3 = np.tan(x) # Create figure and initial plot fig, ax = plt.subplots() line, = ax.plot(x, y1, label='sin(x)') ax.legend() plt.xlabel("X-axis") plt.ylabel("Y-axis") # RadioButtons to select functions rax = plt.axes([0.7, 0.5, 0.15, 0.15], frameon=True) # Position of the radio buttons radio = RadioButtons(rax, ('sin(x)', 'cos(x)', 'tan(x)')) # Callback function to update plot based on selection def update_function(label): if label == 'sin(x)': line.set_ydata(y1) elif label == 'cos(x)': line.set_ydata(y2) elif label == 'tan(x)': line.set_ydata(np.where(np.abs(y3) < 10, y3, np.nan)) # Handle large values in tan line.set_label(label) ax.legend() plt.draw() radio.on_clicked(update_function) plt.show()
In this example:
- RadioButtons creates a simple menu of choices for sin(x), cos(x), and tan(x).
- update_function changes the plot’s data based on the selected option.
2. Using ipywidgets.Dropdown in Jupyter Notebooks
If you're using a Jupyter Notebook, ipywidgets offers an easy-to-use Dropdown widget to create dropdown menus.
import numpy as np import matplotlib.pyplot as plt from ipywidgets import Dropdown, interact from IPython.display import display # Data setup x = np.linspace(0, 2 * np.pi, 100) y1 = np.sin(x) y2 = np.cos(x) y3 = np.tan(x) # Create a plot fig, ax = plt.subplots() line, = ax.plot(x, y1, label="sin(x)") ax.legend() # Dropdown menu options dropdown = Dropdown( options=['sin(x)', 'cos(x)', 'tan(x)'], value='sin(x)', description='Function:', ) # Callback to update plot def update_plot(selected_function): if selected_function == 'sin(x)': line.set_ydata(y1) elif selected_function == 'cos(x)': line.set_ydata(y2) elif selected_function == 'tan(x)': line.set_ydata(np.where(np.abs(y3) < 10, y3, np.nan)) # Handle large values in tan line.set_label(selected_function) ax.legend() plt.draw() # Display dropdown menu and link to update_plot function display(dropdown) dropdown.observe(lambda change: update_plot(change.new), names='value')
3. Implementing a Custom Dropdown Menu with Matplotlib Event Listeners
If you are working outside of a Jupyter Notebook and need more control over the dropdown, you can create a custom dropdown-like menu using a toolbar button and event listeners.
import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Button # Data setup x = np.linspace(0, 2 * np.pi, 100) y1 = np.sin(x) y2 = np.cos(x) y3 = np.tan(x) # Plot setup fig, ax = plt.subplots() line, = ax.plot(x, y1, label='sin(x)') ax.legend() plt.xlabel("X-axis") plt.ylabel("Y-axis") # Dropdown-style button button_ax = plt.axes([0.8, 0.05, 0.1, 0.075]) button = Button(button_ax, 'Menu') # Options for "dropdown" and their functions options = {'sin(x)': y1, 'cos(x)': y2, 'tan(x)': np.where(np.abs(y3) < 10, y3, np.nan)} current_option = 'sin(x)' # Define dropdown menu simulation def on_button_click(event): global current_option menu_text = '\n'.join([f"{opt}: Click to select" for opt in options.keys()]) print(menu_text) new_option = input("Select a function (type exactly): ") # Mimics a dropdown menu with user input # Update plot based on selection if new_option in options: current_option = new_option line.set_ydata(options[current_option]) line.set_label(current_option) ax.legend() plt.draw() button.on_clicked(on_button_click) plt.show()
This approach:
- Shows menu options as a text prompt in the console, where users type their choice.
- Updates the plot based on the user’s input.
4. Creating Multiple Interactive Buttons as a Menu
If a true dropdown isn't required, a set of interactive buttons can work well as a menu for plot selection.
import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Button # Data setup x = np.linspace(0, 2 * np.pi, 100) y1 = np.sin(x) y2 = np.cos(x) y3 = np.tan(x) # Create the figure and initial plot fig, ax = plt.subplots() line, = ax.plot(x, y1, label="sin(x)") ax.legend() plt.xlabel("X-axis") plt.ylabel("Y-axis") # Callback functions to update plot based on button selection def plot_sin(event): line.set_ydata(y1) line.set_label("sin(x)") ax.legend() plt.draw() def plot_cos(event): line.set_ydata(y2) line.set_label("cos(x)") ax.legend() plt.draw() def plot_tan(event): line.set_ydata(np.where(np.abs(y3) < 10, y3, np.nan)) # Filter out large tan values line.set_label("tan(x)") ax.legend() plt.draw() # Create buttons as a menu for different functions sin_button_ax = plt.axes([0.7, 0.7, 0.1, 0.05]) sin_button = Button(sin_button_ax, 'sin(x)') sin_button.on_clicked(plot_sin) cos_button_ax = plt.axes([0.7, 0.6, 0.1, 0.05]) cos_button = Button(cos_button_ax, 'cos(x)') cos_button.on_clicked(plot_cos) tan_button_ax = plt.axes([0.7, 0.5, 0.1, 0.05]) tan_button = Button(tan_button_ax, 'tan(x)') tan_button.on_clicked(plot_tan) plt.show()
5. Interactive Dropdown Using ComboBox in Jupyter (for Advanced)
In Jupyter notebooks, ipywidgets provides a ComboBox widget that allows text input with suggestions, similar to a dropdown.
import numpy as np import matplotlib.pyplot as plt from ipywidgets import interact, Combobox from IPython.display import display # Data setup x = np.linspace(0, 2 * np.pi, 100) y1 = np.sin(x) y2 = np.cos(x) y3 = np.tan(x) # Create initial plot fig, ax = plt.subplots() line, = ax.plot(x, y1, label="sin(x)") ax.legend() plt.xlabel("X-axis") plt.ylabel("Y-axis") # Create combobox menu options = ['sin(x)', 'cos(x)', 'tan(x)'] combobox = Combobox( placeholder='Choose function', options=options, description='Function:', ensure_option=True ) # Function to update plot based on selection def update_plot(selected_function): if selected_function == 'sin(x)': line.set_ydata(y1) elif selected_function == 'cos(x)': line.set_ydata(y2) elif selected_function == 'tan(x)': line.set_ydata(np.where(np.abs(y3) < 10, y3, np.nan)) # Filter large values line.set_label(selected_function) ax.legend() plt.draw() # Display combobox and set up interaction display(combobox) combobox.observe(lambda change: update_plot(change.new), names='value')
Summary
In this tutorial, we covered different ways to create interactive dropdown menu functionality in Matplotlib:
- Radio buttons as a dropdown alternative for simple options.
- Dropdown menus with ipywidgets.Dropdown in Jupyter Notebooks for more native dropdown functionality.
- Custom text-based dropdown menu with console input for flexibility in a non -GUI environment.
- Multiple button widgets as a menu option to switch between data sets.
- Combobox in Jupyter for text-based interactive dropdowns.